Mechanics and Ballistics of Pneumatic Spud Cannons

The Mathcad file for this paper is available at: http://vxphysics.com/Mathcad/
The Purpose of this paper is to model the mechanics and ballistics of a pneumatic spud cannon.
We will do this in this 5 steps:
Description of a Spud Cannon and Definition of Terms
Develop models, equations, and methodology for determining muzzle velocity and trajectory
Comparison of Velocities and Accelerations of Different Models of Internal Muzzle Ballistics
Comparison between Models and Performance Data
Implementation of some ways to better model internal muzzle behavior

This paper offers an examination of the fundamental parameters that govern the internal ballistics of a cannon's muzzle velocity, as well as the resulting trajectory of the projectile in flight. Beginning with a detailed lexicon of terms and values in Section I, we establish a foundation for the complex interplay between internal geometry, volume, pressure, the force of barrel resistance, loss mechanisms and the resulting acceleration and spud velocity within the barrel of the cannon.

We then delve into the application of an Energy Balance Model (EBM) in Section II to capture the incremental changes in muzzle velocity over minute distances. This model forms the basis for the computational tool outlined in Section III, which is utilized to calculate the cannon muzzle velocity, pressure, and acceleration-essential factors for accurate ballistics.

Section IV presents the results derived from the EBM calculations, further visualized in Section V through graphical representations of the calculated values. A critical evaluation of various models for calculating muzzle velocity is conducted in Section VI, ensuring a robust approach to our methodology.

The work of Mungan in Section VII provides insight into dimensionless velocity and acceleration curves, an indispensable tool for theoretical understanding. Section VIII bridges theory and practice by comparing our model results with empirical data from the Pollman Video Dataset 1.

We extend our analysis in Section IX with EBM calculations tailored to velocity and acceleration, followed by the development of an analytical expression in Section X for the spud (projectile) trajectory accounting for air resistance - a factor often omitted in simplified models.

Section XI details a specially designed program that calculates trajectories at varying launch angles, allowing for a nuanced prediction of projectile paths. Finally, Section XII captures the culmination of our study with plots that trace the trajectory positions, velocities, and accelerations of projectiles, providing a visual summation of our findings.

This paper provides an interesting review of the literature concerning internal ballistics models and computational tools but also verifies these approaches against experimental data, thus offering a holistic view of internal ballistics and projectile motion.

Potato Cannon

A potato cannon is a pipe-based cannon that uses air pressure (pneumatic) to launch projectiles at high speeds. They are built to fire chunks of potato, as a hobby, or to fire other sorts of projectiles, for practical use.

These cannons have four basic components:
A filling valve, an air chamber, a pressure release valve, and a barrel.
In a pneumatic spud cannon, air is pumped into the pressure chamber. After the desired chamber pressure is reached, the pressure release valve is opened, allowing the gas to expand down the barrel, propelling the projectile forwards. The filling valve is used to pressurize the cannon and is usually a tire valve. The pressure is released with a quick release connections with ball or check valves have been used.
The pressure release valve is often one of a variety of commercially available types such as a plumbing ball valve, an irrigation sprinkler valve or a quick exhaust valve. The range of pneumatic cannons is more variable than the range of combustion spud cannons due to the increased variation possible in the components. Typical ranges are slightly higher because of the greater power, but the maximum range of some high power pneumatic cannons has been said to be over 1,000 meters ($1,100 \mathrm{yd}$). Pneumatic spud cannons are generally more powerful than combustion spud cannons.

Table of Contents

I. Definition of Terms and Values of Internal Muzzle and Ballistic Parameters II. Energy Balance Model (EBM) of Incremental Distance, Δx x, of Muzzle Velocity III. Program to Calculate Cannon Muzzle Velocity, Pressure, and Acceleration IV. Results of Energy Balance Model Calculations
V. Plot of Calculated Values for Muzzle Velocity, Pressure, and Acceleration VI. Comparison of Four Different Models to Calculate Muzzle Velocity VII. Dimensionless Velocity \& Acceleration Curves - Paper by Mungan VIII. Compare Model Results versus Measurements - Pollman Video Dataset 1 IX. Results of EBM Calculations for Velocity and Acceleration X. Analytic Expression for the Spud Trajectory with Air Resistance XI. Program to Calculate Trajectories for Different Launch Angles XII. Plots of Trajectory Positions, Velocities, and Accelerations

I. Definition of Terms \& Values of Muzzle \& Ballistic Parameters

Given a Spud Cannon with Initial Volume, $\mathrm{V}_{\text {init }}$ and Pressure, $\mathrm{P}_{\text {init. }}$. It pushes against a piston (potato) of Diameter, $\mathrm{D}_{\text {piston }}$, potato mass, m_{p}, with initial velocity, $\mathrm{v}_{\text {Init }}$ and a Force of Friction, $\mathrm{F}_{\text {fic }}$, that is constant.
Find the Final Pressure, Final Velocity, and acceleration of the piston, $\Delta \mathrm{x}$. Assume that the air expansion is isothermal, no air leakage in the barrel, a perfect valve that does not restrict air flow and opens instantaneously, air pressure in the reservoir is the same as in the barrel, and the effect of atmos pressure in the barrel is negligible compared to ${ }_{\text {Pinit }}$. We assume that the Drag Coefficient of the projectile is $\mathrm{Cd}=1.5$.

No Model for Gas Flow During the Opening of Air Valve

$$
\text { Compensate for Restricted Air Flow with a Pressure Saturation Parameter, } \xi: \quad \xi:=1
$$

II. Energy Balance Model (EBM) of Incremental Distance, $\boldsymbol{\Delta x}$, of Muzzle Velocity

$$
\begin{aligned}
& A_{D}:=A_{\text {piston }} \\
& \frac{1}{2} m \cdot v_{\text {final }}{ }^{2}=\frac{1}{2} m_{p} \cdot v_{\text {init }}{ }^{2}+\frac{P_{\text {init }}+P_{\text {final }}(\Delta x)}{2} \cdot \Delta V(\Delta x)-F_{\text {fric }} \cdot \Delta x
\end{aligned}
$$

Find Final Velocity

PeakAcceleration:
$A_{\text {peak }}:=\frac{P_{\text {init }} \cdot A_{p}}{m_{n}}$
$A_{\text {peak }}=1.7 \times 10^{3} \cdot g$

$$
v_{\text {vinal }}\left(m_{p}, V_{i}, \Delta x\right):=\sqrt{v_{\text {init }}{ }^{2}+\frac{2}{m_{p}} \cdot\left(\frac{P_{\text {init }}+P_{\text {final }}\left(V_{i}, \Delta x\right)}{2} \cdot \Delta V(\Delta x)-F_{\text {fric }} \cdot \Delta x\right)}
$$

Crude Approximation that is Not Incremental: $\operatorname{vel}_{\text {final }}\left(m_{p}, V_{\text {init }}, 60 \mathrm{in}\right)=581.3 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$

Net Force and Acceleration

$$
\begin{aligned}
& F_{\text {net }}\left(V_{i}, \Delta x\right):=\frac{P_{\text {init }}+P_{\text {final }}\left(V_{i}, \Delta x\right)}{2} \cdot A_{\text {piston }}-F_{\text {fric }} \quad F_{\text {net }}\left(V_{\text {init }}, 0.1 \text { in }\right)=235.08 \cdot l b f \\
& a\left(V_{i}, \Delta x\right):=\frac{F_{n e t}\left(V_{i}, \Delta x\right)}{m_{p}} a\left(V_{\text {init }}, 0.1 \text { in }\right)=1.57 \times 10^{3} \cdot g \text { Step }:=\frac{L_{b}}{0.1 \text { in }}=400 \\
& \text { time }=\frac{a}{v} \quad \operatorname{Time}\left(V_{i}, \Delta x\right):=\frac{\text { vel }_{\text {final }}\left(m_{p}, V_{i}, \Delta x\right)}{a\left(V_{i}, \Delta x\right)} \quad \text { Time }\left(V_{\text {init }}, 0.1 \text { in }\right)=5.75 \times 10^{-4}{ }_{s}
\end{aligned}
$$

Iterative Solution

$$
A_{p}=2.06 \times 10^{-3} \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& P_{f}\left(P_{i}, V_{i}, \Delta x\right):=P_{i}\left(\frac{V_{i}}{V_{i}+A_{p} \cdot \Delta x}\right)^{\gamma \gamma} \frac{100 p s i \cdot A_{p i s t o n}}{m_{p}}=2.13 \times 10^{3} \cdot g \\
& P_{f}\left(P_{\text {init }}, V_{\text {init }}, 0.1 \text { in }\right)=79.82 \cdot p s i \\
& a i\left(P_{i}, V_{i}, m_{p}, F_{f r}, \Delta x\right):=\frac{1}{m_{p}}\left(\frac{P_{i}+P_{f}\left(P_{i}, V_{i}, \Delta x\right)}{2} \cdot A_{p}-F_{f r}-A_{p} \cdot P_{\text {atm }}\right) \\
& \text { ai }\left(P_{\text {init }}, V_{\text {init }}, m_{p}, F_{\text {fric }}, 0.1 \text { in }\right)=1.25 \times 10^{3} \cdot g
\end{aligned}
$$

$$
v_{f m}\left(v_{i}, P_{i}, V_{i}, m_{p}, F_{f r}, \Delta x\right):=\sqrt{v_{i}^{2}+\frac{2}{m_{p}} \cdot\left[\frac{P_{i}+P_{f}\left(P_{i}, V_{i}, \Delta x\right)}{2} \cdot\left(A_{p} \cdot \Delta x\right)-F_{f r} \cdot \Delta x-A_{p} \cdot P_{a t m} \cdot \Delta x\right]}
$$

$$
v_{f m}\left(v_{i n i t}, P_{\text {init }}, V_{i n i t}, m_{p}, F_{\text {fric }}, 0.1 i n\right)=7.91 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

III. Program to Calculate Cannon Muzzle Velocity, Pressure, Acceleration

EBM: Internal Ballistic Parameters of Spud Cannon vs. Position
Calculate How the Velocity, Pressure, and Acceleration Vary Along Length of the Cannon

$$
\Delta x:=0.1 \text { in } \quad v_{\text {init }}=0.1 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$\operatorname{Traj}\left(m, P_{0}, V_{0}, F_{f}\right):=$	$P_{i} \leftarrow P_{0}$
Note: n Determines the Barrel Length -->	$V_{i} \leftarrow V_{0}$
	$v_{i} \leftarrow v_{\text {init }}$
	$t_{0} \leftarrow 0 s$
	for $n \in 1 . .710$
	$\left\lvert\, \begin{aligned} & v_{n} \leftarrow v_{i} \leftarrow v_{f m}\left(v_{i}, P_{i}, V_{i}, m, F_{f}, \Delta x\right) \\ & P_{n} \leftarrow P_{i} \leftarrow P_{f}\left(P_{i}, V_{i}, \Delta x\right) \end{aligned}\right.$
	$a_{n} \leftarrow a i\left(P_{i}, V_{i}, m, F_{f}, \Delta x\right)$
	$V_{i} \leftarrow V_{\text {final }}\left(V_{i}, \Delta x\right)$
	$t_{n} \leftarrow\left(v_{n}-v_{n-1}\right) \cdot \frac{1}{a_{n}}+t_{n-1}$
	$M_{n, 0} \leftarrow v_{i} \cdot \frac{s}{f t}$
	$M_{n, 1} \leftarrow P_{n} \cdot p s i^{-1}$
	$M_{n, 2} \leftarrow a_{n} \cdot g^{-1}$
	$M_{n, 3} \leftarrow t_{n} \cdot s^{-1} \cdot 10^{3}$
	\| M
$a i_{m}\left(P_{i}, V_{i}, m_{p}, \Delta x\right):=\frac{1}{m_{p}}\left(\frac{P_{i}+P_{f}\left(P_{i}, V_{i}, \Delta x\right)}{2} \cdot A_{p}-F_{f r i c}-A_{p} \cdot P_{a t m}\right)$	
$a i_{m}\left(P_{\text {init }}, V_{\text {init }}, 10 \mathrm{oz}, 0.1 \mathrm{in}\right)=301.05 \cdot \mathrm{~g}$	
$v_{f m}\left(v_{\text {init }}, P_{\text {init }}, V_{\text {init }}, 10 o z, F_{\text {fric }}, 0.1 \mathrm{in}\right)=3.87 \frac{\mathrm{~m}}{\mathrm{~s}}$	

IV. Results of Energy Balance Model Calculations $\quad V_{\text {init }}=200 \cdot \mathrm{in}^{3}$

$$
\begin{array}{ll}
\operatorname{Vel}\left(m, P, V, F_{f}\right):=\operatorname{Traj}\left(m, P \cdot p s i, V \cdot i^{3}, F_{f} \cdot l b f\right)^{\langle 0\rangle} \cdot \frac{f t}{s} & \text { Velocity }:=\operatorname{Traj}\left(m_{p}, P_{\text {init }}, V_{\text {init }}, F_{\text {fric }}\right)^{\langle 0\rangle} \\
\operatorname{Pres}\left(m, P, V, F_{f}\right):=\operatorname{Traj}\left(m, P \cdot p s i, V \cdot i n^{3}, F_{f} \cdot l b f\right)^{\langle 1\rangle} \cdot p s i & \text { Accel }:=\operatorname{Traj}\left(m_{p}, P_{\text {init }}, V_{\text {init }}, F_{\text {fric }}\right)^{\langle 2\rangle} \\
\operatorname{Accl}\left(m, P, V, F_{f}\right):=\operatorname{Traj}\left(m, P \cdot p s i, V \cdot i^{3}, F_{f} \cdot l b f\right)^{\langle 2\rangle} \cdot g & \text { time }:=\operatorname{Traj}\left(m_{p}, P_{\text {init }}, V_{\text {init }}, F_{\text {fric }}\right)^{\langle 3\rangle} \\
n:=0 . .600 & \text { Pressure }:=\operatorname{Traj}\left(m_{p}, P_{\text {init }}, V_{\text {init }}, F_{\text {fric }}\right)^{\langle 1\rangle}
\end{array}
$$

IV. Plot of Energy Balance Model: Muzzle V vs. Position

 48/60 inches long Barrel Driven by 80 psi Tank

Length of Travel Down 40 inch Long Barrel in units of $\mathrm{n}=1 / 10$ s of an inch
Velocity blue (ft / s), Acceleration-red (g) as a function of mass (kg)

VI. Comparison of Four Calculation Methodologies

Unfortunately, the cited reference reports that none of these 4 Methods give very accurate results.
Compressed-Air Spud Cannon and Performance Assessment - Crawford
m Mass of the projectile, kg
Po Initial pressure in the air reservoir
Vo Air reservoir volume, m^{3}
A Cross-sectional area of the barrel

$$
\begin{aligned}
& m_{p}=0.15 \cdot l b \\
& P_{n}:=P \cdot \ldots: t=80 \cdot p s i \\
& V_{0}:=V_{\text {init }}=200 \cdot \mathrm{in}^{3} \\
& A_{\mathrm{m}}:=A_{\text {piston }}=0.0021 \mathrm{~m}^{2} \\
& \quad \gamma_{\text {iso }}:=0.4
\end{aligned}
$$

$$
\text { Model 1: } V_{l}\left(L_{b}\right):=\sqrt{\frac{5 P_{0} \cdot V_{0}}{m_{p}} \cdot\left[1-\left(\frac{V_{0}}{A \cdot L_{b}+V_{0}}\right)^{\gamma_{i s o}}\right]-\frac{2 A \cdot L_{b} \cdot P_{a t m}}{m_{p}}-\frac{2 \cdot L_{b} \cdot f}{m_{p}}} \quad V_{l}\left(L_{b}\right)=439.75 \cdot \frac{f t}{s}
$$

Equation $\mathbf{V}_{2}\left(\underline{L}_{\underline{b}}\right)$: Projectile Velocity of an Air Cannon, Rohrbach Model

Model 2:
Rohrbach

$$
V_{2}\left(L_{b}\right):=\sqrt{\frac{2}{m_{p}} \cdot\left(P_{0} \cdot V_{0} \cdot \log \left(1+\frac{A \cdot L_{b}}{V_{0}}, e\right)-A \cdot L_{b} \cdot P_{a t m}-L_{b} \cdot f\right)}
$$

$$
V_{2}\left(L_{b}\right)=490.58 \cdot \frac{f t}{s}
$$ Isothermal

Model 3:

Spudgun Technology Center (STC) Excel Model:

ReadData from STC Model $\quad S T C:=R E A D P R N($ "SGTech.txt") st $:=0 . .999$

$$
V_{3}:=S T C^{\langle 5\rangle} \cdot \frac{m}{f t} \quad L_{3_{s t}}:=\frac{L_{b} \cdot s t}{999} \cdot \frac{m}{f t} \quad P_{3}:=S T C^{\langle 1\rangle} \quad V_{3_{998}} \cdot \frac{f t}{s}=549.18 \cdot \frac{f t}{s}
$$

Model 4:
Energy Balance Model Velocity ${ }_{n}$ is the Velocity Calculated from Conservation of Energy on Page 2

$$
\text { Length }:=600 \cdot 0.1 \text { in }=5 \cdot f t \quad \text { Velocity } 600 \cdot \frac{f t}{s}=439.75 \cdot \frac{f t}{s}
$$

VII. Dimensionless Velocity \& Acceleration Curves - Mungan Paper Use EBM Model Match These Sim Curves

Internal ballistics of a pneumatic potato cannon,

Carl E Mungan,Eur. J. Phys. 30 (2009) 453-457

Spud Cannon From Page 3
It has the Same Shape as the Mungan Curves

Distance

Dimensionless speed, acceleration and time as a function of distance for a projectile propelled along a cylinder by a diatomic gas. The time has been divided by 20 to keep it on scale.

VIII. Compare Velocity from this Sim to Data from Pollman Video Measurements Source of Experimental Data: Video measurement of the muzzle velocity of a potato gun, Pollman

Test Conditions for Pollman Pneumatic Cannon Video Muzzle Velocity Paper

Gauge Pressure from 45 to 120 psi , mass from 0.05 to $0.35 \mathrm{~kg}, \mathrm{Vol}_{\text {tank }}=\mathbf{9 0 4 0} \mathbf{~ m L}$,
Barrel 5.08 cm (2 inches) $\times 1.8 \mathrm{~m}$ (7 lin) long, Volume $=3640 \mathrm{ml}$ ($5.08 \mathrm{~cm} \times 1.8 \mathrm{~m}$ long). Mass from 0.05 to 0.35 kg , Kinetic Friction Force Estimate: $\mathrm{F}_{\text {fic }} 1$ to $2 \mathrm{~N} \quad \mathrm{n}$ varies from 1.5 to 3.38 mol

Digitize (https://automeris.io/WebPlotDigitizer/) Data Points from Pollman's Data Points

$V_{120}:=R E A D P R N$ ("Video Pollman red.csv")
$V_{110}:=R E A D P R N($ "Video Pollman black.csv")
$V_{100}:=R E A D P R N$ ("Video Pollman green.csv")
71 inch long barrel \Rightarrow 710th Row for Velocitym Function

$$
n:=0 . .720
$$

Velocity Model for mass, Pressure, and Muzzle Resistance

$$
\begin{aligned}
& \operatorname{Vel}\left(m_{p}, \frac{P_{\text {init }}}{p s i}, \frac{V_{\text {ini }}}{i n^{3}}, \frac{F_{\text {fric }}}{l b f}\right) 400=468.47 \cdot \frac{f t}{s} \quad \text { Accl }\left(m_{p}, \frac{P_{\text {init }}}{p s i}, \frac{V_{\text {ini }}}{i n^{3}}, \frac{F_{\text {fric }}}{l b f}\right) 400=825.42 \cdot g \\
& \operatorname{Pres}\left(m_{p}, \frac{P_{\text {init }}}{p s i}, \frac{V_{\text {ini }}}{i n^{3}}, \frac{F_{\text {fric }}}{l b f}\right) 400=59.77 \cdot p s i \\
& \operatorname{Velc}(m p, P):=\operatorname{Vel}\left(m p \cdot k g, P, \frac{V_{\text {ini }}}{i n^{3}}, \frac{F_{\text {fric }}}{l b f}\right) 710 \\
& j j:=0,1 . .15 \quad m p_{j j}:=0.025 \cdot j j+0.025
\end{aligned}
$$

Data: Video measurement of the muzzle velocity (m / s) of a potato gun, Anthony Pollman

The experimental data has a large amount of scatter. This plot is a crude approximation at best.

Mark D's Simulation Parameters

$$
\begin{aligned}
& P_{\text {init }}=80 \cdot p s i \quad n_{\text {old }}:=\frac{P_{\text {init }} \cdot V_{\text {init }}}{R \cdot T}=217.44 \frac{\mathrm{~s}^{2} \cdot \mathrm{~K} \cdot \mathrm{~A} \cdot \mathrm{~mol}}{\mathrm{~kg}} \quad \quad \text { Velocity }_{346} \cdot \frac{\mathrm{ft}}{\mathrm{~s}}=117.2 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& m_{p}=0.07 \mathrm{~kg}
\end{aligned}
$$

Velocity, Pressure, Mass for a 40 inch Barrel for M. Decker's Cannon:

Velocity $400 \cdot \frac{f t}{s}=400.71 \cdot \frac{f t}{s} \quad P_{\text {init }}=551.58 \cdot \mathrm{kPa} \quad P_{\text {init }}=80 \cdot p \mathrm{si} \quad m_{p}=0.07 \mathrm{~kg} \quad m_{p}=0.15 \cdot \mathrm{lb}$

$$
V_{\text {minitan }}:=2.95 \mathrm{~L}
$$

Length of Barrel for Video Test Data: $\quad L e n_{v i d}:=88 \mathrm{~cm}=34.65 \cdot \mathrm{in}$

Find Volume to Match Pollman Video Paper

From Chart Below: $\quad n_{n e w}:=2.37 \quad V_{n 288}:=\frac{n_{\text {new }} \cdot R \cdot T}{P_{\text {init }}} \quad V_{n 288}=2.18 \frac{\mathrm{~kg}}{\mathrm{~s}^{2} \cdot \mathrm{~K} \cdot \mathrm{~A}} \cdot \frac{\mathrm{in}^{3}}{\mathrm{~mol}}$

IX. Model Calculations for Velocity and Acceleration from Page 2 and 3 Velocity and Acceleration vs. Mass for Various Chamber Pressures

Definitions of Vm and Am are not shown. They are just the previous v and P Equations with m and P as variables.
$V_{m}(m x, P):=\operatorname{Vel}\left(m x \cdot k g, P, \frac{V_{\text {init }}}{i n^{3}}, \frac{F_{\text {fric }}}{l b f}\right) 400 \quad A_{m}(m x, P):=\operatorname{Accl}\left(m x \cdot k g, P, \frac{V_{\text {init }}}{i n^{3}}, \frac{F_{\text {fric }}}{l b f}\right) 400 \frac{1}{g}$
NOTE: The number of moles for this Model was adjusted to approximately match the number moles in test data

Adiabatic Plot: $\gamma=1.4$

Isothermal Plot: $\gamma=\mathbf{0 . 4}$

$\underline{\text { X. Variation of Pressure and Acceleration vs. Initial Chamber Volume }}$

$$
\begin{array}{lc}
P_{V}(m x, V):=\operatorname{Pres}\left(m x \cdot k g, 80, V, \frac{F_{\text {fric }}}{l b f}\right) \frac{1}{p s i} & A_{V}(m x, V):=A c c l\left(m x \cdot k g, 80, V, \frac{F_{\text {fric }}}{l b f}\right) \frac{1}{g} \\
P_{V}(0.35,200)_{3}=79.47 & A_{V}(0.35,200)_{1}=243.11
\end{array}
$$

X. Analytic Expression for the Spud Trajectory for Initial Velocity

The trajectory equation for a projectile fired at an angle θ with initial velocity, vinit, can be obtained from the parametric equations of motion under constant acceleration due to gravity. For an angle of 45 degrees, these equations become:

Note: The Final Muzzle Velocity is the Initial Velocity for the Beginning of the Trajectory

$$
\text { Final Muzzle Velocity } \quad v_{\text {winitu }}:=\text { Velocity }_{400} \cdot \frac{f t}{\mathrm{~s}} \quad v_{\text {init }}=400.71 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \quad v_{\text {init }}=122.14 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$\underline{\mathbf{x} \text { direction is distance } \quad x(t):=v_{\text {init }} \cdot t \cdot \cos (45 \mathrm{deg})}$
\mathbf{y} direction is up and down $\quad y(t):=v_{\text {init }} \cdot t \cdot \sin (45 d e g)-\frac{1}{2} g \cdot t^{2}$

$$
\begin{array}{ll}
\cos (45 \mathrm{deg})=0.71 & \sin (45 \mathrm{deg})=0.71 \\
x(1 \mathrm{sec})=283.35 \cdot f t & y(1 \mathrm{sec})=81.46 \mathrm{~m}
\end{array}
$$

To e liminate time t and get y as a function of x, we solve for t from the $x(t)$ equation and substitute into the $\mathrm{y}(\mathrm{t})$ equation

$$
\operatorname{time}(x, \theta)=\frac{x(t)}{v_{\text {init }} \cdot \cos (\theta d e g)}
$$

$$
\nu(x, \theta):=v_{\text {init }} \cdot \sin (\theta \cdot d e g) \cdot\left(\frac{x}{v_{\text {init }} \cdot \cos (\theta \cdot d e g)}\right)-\frac{1}{2} g \cdot\left(\frac{x}{v_{\text {init }} \cdot \cos (\theta \cdot d e g)}\right)^{2}
$$

Calculate the Cannon Trajectory for a Spud with Air Drag

Note: The Final Muzzle Velocity is the Initial Velocity for the Beginning of the Trajectory

$$
\Delta t:=0.01 \cdot s
$$

Drag Coefficient

Density of Air

$$
\rho_{\text {air }}:=1.293 \cdot \frac{g m}{L}
$$

$$
v m u z_{\text {final }}:=\text { Velocity }_{600} \cdot \frac{f t}{s}
$$

Initial Trajectory Velocities:
$C d:=1.5$
Final Muzzle Velocity:
-

Drag Force for Frontal Area of Spud

$$
D_{\text {drag }}:=0.5 \cdot \rho_{\text {air }} \cdot A_{\text {piston }} \cdot C d
$$

$$
v m u z_{\text {final }}=134.04 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
v_{0 x}\left(v_{m u z}, \theta\right):=v_{m u z} \cdot \cos (\theta \cdot d e g)
$$

$$
v_{0 y}\left(v_{m u z}, \theta\right):=v_{m u z} \cdot \sin (\theta \cdot d e g)
$$

$v_{0 y}\left(v_{m u z}, \theta\right):=v_{m u z} \cdot \sin (\theta \cdot d e g)$

XI. Program to Calculate Trajectories for Different Launch Angles

Given the Final Muzzle Velocity, $\mathbf{v}_{\text {muz }}$

$$
n n:=600 \quad i:=1 . . n n \quad x_{0}:=0 \frac{f t}{s} \quad y_{0}:=0 \frac{f t}{s}
$$

$$
\operatorname{Tr}\left(v_{m u z}, \theta\right):=
$$

$$
\left\{\begin{array}{l}
y_{0} \leftarrow x_{0} \leftarrow x_{0} \\
v_{x} \leftarrow v_{0 x}\left(v_{m u z}, \theta\right) \\
v_{y} \leftarrow v_{0 y}\left(v_{m u z}, \theta\right)
\end{array}\right.
$$

$$
\text { for } i \in 1 . . n n
$$

$$
\left\{\begin{array}{l}
v \leftarrow \sqrt{v_{x}^{2}+v_{y}^{2}} \\
a_{x} \leftarrow \frac{-D_{d r a g} \cdot v \cdot v_{x}}{m_{p}} \\
a_{y} \leftarrow-g-\frac{D_{d r a g} \cdot v \cdot v_{y}}{m_{p}}
\end{array}\right.
$$

Note: No barrel friction after launch

$$
\frac{-D_{d r a g} \cdot v m u z_{\text {final }}^{2}}{m_{p}}=-527.34 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
-g-\frac{D_{d r a g \cdot v m u z}^{\text {final }^{2}}}{m_{p}}=-537.14 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

[^0]$$
x_{i} \leftarrow x_{i-1}+v_{x} \cdot \Delta t+0.5 \cdot a_{x} \cdot \Delta t^{2}
$$
\[

\left\{$$
\begin{array}{l}
y_{i} \leftarrow y_{i-1}+v_{y} \cdot \Delta t+0.5 \cdot a_{y} \cdot \Delta t^{2} \\
v_{x} \leftarrow v_{x}+a_{x} \cdot \Delta t
\end{array}
$$\right.
\]

XIII. Plots of Trajectory Positions, Velocities, and Accelerations
 NOTE: Air Drag reduces Spud Range and Final Velocity by 56\%

Vertical Axis is Height in Feet. Horizontal Axis is Distance in Feet

Given Initial Pressure of 80 psi, Volume of 200 in 3, and Barrel Length 40 inches, the final muzzle velocity is:

$$
\underline{\text { Final Muzzle Velocity: }} \quad v_{m u z}:=400 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$\underline{\text { Velocity in X Direction }}$

$$
\begin{aligned}
& X(\theta):=\operatorname{Tr}\left(v_{m u z}, \theta\right)^{\langle 0\rangle} \\
& Y(\theta):=\operatorname{Tr}\left(v_{m u z}, \theta\right)^{\langle 1\rangle} \\
& V X(\theta):=\operatorname{Tr}\left(v_{m u z}, \theta\right)^{\langle 2\rangle} \\
& V Y(\theta):=\operatorname{Tr}\left(v_{m u z}, \theta\right)^{\langle 3\rangle} \\
& v_{\text {total }}(\theta):=\sqrt{V X(\theta)^{2}+V Y(\theta)^{2}}
\end{aligned}
$$

$\underline{\text { Acceleration in X Direction }}$

$$
\begin{aligned}
& A X(\theta):=\operatorname{Tr}\left(v_{m u z}, \theta\right)^{\langle 4\rangle} \\
& \operatorname{Time}_{i}:=i \cdot \Delta t \cdot 10 \\
& V X(30)_{400} \cdot \frac{f t}{s}=13.35 \cdot \mathrm{mph} \\
& v_{\text {total }}(30)_{1} \cdot \frac{f t}{s}=262.86 \cdot \mathrm{mph} \\
& v_{\text {total }}(30)_{400} \cdot \frac{f t}{s}=35.37 \cdot \mathrm{mph}
\end{aligned}
$$

Distance in Feet

[^0]:

